
Journal of Statistical Physics, Vol. 61, Nos. 1/2, 1990 

Multilayer Wetting in Clock Models 

Karl Berlier, 1 Join! De  Coninck, 1 Francois Dunlop, 2 
and Frederic Menu ~ 

Received November 29, 1989; Final May 16, 1990 

We show that the interface between two coexisting phases of the q-state clock 
model is wetted for any temperature by a stack of films of the phases corre- 
sponding to the intermediate angles, assuming q even and q ~> 4. This follows 
from the positivity of the spreading coefficients, which we prove using correla- 
tion inequalities. A small perturbation of the model exhibits a wetting transition 
in the low-temperature regime. 
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1. I N T R O D U C T I O N  

We consider the interface between two phases of a system which can have 
three or more phases in coexistence. Depending on the physical 
parameters, this interface may be wetted by one or several macroscopic 
films of the other phases. 

This problem has already been studied extensively for three-phase 
models: in the Blume-Capel model, the interface between the phases "+  1" 
and " - 1 "  is wetted by the "0" phase at the single temperature where the 
three phases coexist (for fixed values of the other parameters) (1-3) in the 
three-state chiral clock model one can have a wetted interface above a 
certain wetting transition temperature. (3' 4) 

Among the models which have been intensively studied to describe the 
coexistence of many phases, there are in particular the q-state Potts model 
(q ~> 4) and the q-state clock model (q f> 4). 

The Potts model is completely symmetric: the properties of the inter- 
faces between two ordered phases are the same for any pair of ordered 
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phases. Such an interface can therefore only be wetted by the disordered 
phase. This indeed occurs at the single temperature where all the phases 
coexistJ 1) The case of partially symmetric Potts models has also been 
considered recently. (5) In this case, inteffacial wetting by one or several 
films also occurs for a discrete set of wetting temperatures. 

The present paper is devoted to the clock model where a ground-state 
analysis shows that interracial wetting already occurs at T =  0. Precise 
definitions will be given in Section 2. Section 3 is devoted to our main 
result: 

Tp, p' ~ "~p,p,, "]- ~p,,,p, (1) 

for all p, p', p" with p <p"  <p '  and p'  - p  <<, q/2, and where Tp, p. is the inter- 
facial tension between the phases corresponding respectively to angles of 
the clock 2~p/q and 2z~p'/q. Inequality (1) leads directly to 

T'p,p'~Tp, p+ l "~-Tp+ l,p+ 2"~- "'" -~ Tp ' - l , p '  (2) 

We thus prove the positivity of a family of spreading coefficients; this 
implies the Antonov rule 

"Cp, p ,=7~p,p+lAr"Cp+l,p+2-  ~- , . .  -~Tp, l,p, 

which corresponds to wetting of the p, p' interface by ( p ' - p  - 1) films of 
the intermediate phases. 

A small perturbation of the clock model is considered in Section 4. 
Complete wetting then occurs only above a certain wetting transition 
temperature. 

2. NOTATION 

The q-state clock model is defined as follows: at each site 
x -- (xl,..., x a) ~ y_d, there is a spin variable ax = 0, 1, 2 ..... q - 1. Let A be a 
finite box c 7/d which has a section (2L) a- 1 and a height 2M, 

A =  { x = ( x ~ , . . . , x a ) ~ Z d ;  Ixil <~L, i =  

The Hamiltonian is defined for such a box A 

1,..., d -  1; [xal ~< M) 

by 

27~ 
- - J  Z cos - -  (Gx-- Gy) (3) 

(x,y> q 
x~A, yEA c 

27g 
H A { a A ' ~ T A * )  = - J  2 C O S - - ( 6 x - - C r x ' )  

(x,x')  q 
EA 
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where J>~0, Z<~,x'> denotes a sum over nearest neighbors, A~wA=2_ a, 
and eA, ~A~ represent two configurations of spins for A and A c, respec- 
tively. The conditional Gibbs measure at inverse temperature/~ is given by 

[AA,fl(a A ' O.AC ) = [ ZA(~,  O.Ac) l -1 exp[__ f lH  A(~ Aa A~) ] 

where 

ZA(fl, aAc)= ~ exp[--flHAL,,(~A, aA,)] 
{oA} 

We now introduce the different possible boundary conditions: 

1. The free boundary conditions obtained by omitting the second 
sum in (3). 

2. The ordered p boundary conditions given by ~y = p  in the second 
sum in (3); this leads to the partition function Z~'P(B). 

3. The mixed (p, p') boundary conditions given by 

ay=p for yd>~O, ay=p' for y < O  

This leads to the partition function Z~'P'(fl). 

The surface tension between two ordered phases p and p'  is then 
defined as usual by 

lim lim log ~P'P'(/~) = - g ~  +~o ~-~ +co \ ~ ]  [Z3,p(B)]m [Z{,p,(~)],/2 (4) 

3. R E S U L T S  

Due to the symmetries of the model, we can limit ourselves to the 
cases where p < p '  and p' - p  <~ q/2. Let us now state our main results 

T h e o r e m .  For  the q-state clock model defined as above, with q 
even and q/> 4, for J~> 0 and any fl, one has 

for all p, p', p" such that 

p<p" <p' and p ' - p ~ q / 2  

As a direct consequence of this theorem, we have the following result. 
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Corollary. For the q-state clock model defined as above with q 
even and q~>4, for J~>0 and any fl, and for all p, p' such that 
0 < p' - p <~ q/2, one has 

~ , , , ( f l ) ~ > ~ . , + , ( / ~ ) + ~ + , . ~ + ~ ( / ~ ) +  ... + ~ ,  ,,~,(/~) 

We therefore have a family of spreading coefficients which are positive 
or zero for any temperature. At equilibrium, spreading coefficients can only 
be zero or negative. Therefore the corollary should imply the validity of the 
Antonov rule 

Tp,  p , ( ~ )  = Tp,  p +  1(/~) -1- Tp+ i,p+2(/~) + "'" q- Tp,_ l,p,(/~) 

Of course, this relation makes sense whenever r(fl)va 0, i.e., when several 
phases coexist at this temperature fl-  ~. This is known to occur for T small 
enough in any dimension d~> 2. 

Proof of the Theorem. Using definition (4) of interracial tensions, 
the theorem follows from the following inequality between products of 
partition functions: 

z 2  q f l )  zf,",," (fl) <. z~,,L~2(fl) z~",~" ~a~ , AL, M ~,l ~ ] (5) 

which we prove in the following. We have 

z~,~'(/~) z3",~"(/~) 

Z exp {flJ 
{~'A,~'3} (x,x'> 

cA 

I 2~ 2~ ] 
c o s - - ( ~ x - ~ x , ) + c o s - - ( ~ - ~ , )  

q q 

+/~J y, cos ( ~ x -  ~,) + cos - -  (a;~- ~y) (6) 
<x,y> q 

x E A ; y c A  c 

Z(o~,~} is a sum over all pairs of configurations (an, a'A) and G=p,  
' = p "  for the upper part of At; ay =p', a'y =p" for the lower part of A c. Oy 

The same kind of expression can be written for the rhs of (5). 
Let ~us now consider the measure ( . ) o  induced by (free boundary 

conditions) 

2/r 
H ~  ~ cos--(O'x-O'x')  

<x,x'> q 
x ~ : A  
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Dividing both sides of (5) by the square of the parti t ion function associated 
with H ~ we get 

a p, p"  .<5. p, p"  p,,  p,, ~ a p . ,  p,  

where 

ap,P'P"-p,,- exp BJ ~ c o s - - ( a ~ - p ) + c o s  (#x-p")  
x e O A  + q 

x exp flJ ~ cos - -  ( a x - p ' )  + cos - -  ( a 2 - P " )  
xeeA- q q o 

P ' P " -  exp flJ ~ c o s - - ( a x - p ) + C O S q ( a x - p  ) ]~  ap, , ,  p,  - -  

x e a A  + q 

x e x p  BJ ~ c o s - - ( a ~ - p " ) + c o s - - ( # ~ - p ' )  
x~aA- q q o 

where c~A = (x~A: d(x, A ~) = 1 }, aA + denotes the upper part of c~A, and 
0A the lower part. For  p ' - p  <~ q/2, it remains to show that 

exp flJ ~ c o s 2 n ( a x - - p ) + c o s - - ( a ' x  
x~aA+ q q 

fl 2= • exp J ~ cos - -  
x~eA- q 

(ax-p')+cos2rt(cr'-p")}> 
q o 

~< exp flJ ~ c o s - -  
x~eA+ q 

2~ } 
(ax - p )  + cos - -  (G ' -p" )  

q 

2rt ,, 2~ , , ) \  
• exp flJ x~OA-~ COS --q (ax --p ) + COS q (ax - -p  ) ~ ) o  (7) 

In t roducing the Percus variables defined by 

2= 2~ 
~ = C O S - - f i  x + C O S - - q ~  

q q 

2~ 2~ 
f l~=coS--ax--COS--a~ 

q q 

2~ 2~ 
y~ = sin - -  a~ + sin - -  a~ 

q q 

2~z 2n 
fix = sin - -  a"  - sin - -  ax 

q q 
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we may expand both sides of inequality (7) in powers of flJ. For the rhs, 
we get a multinomial series in powers of 

cos ~o +- cos ,~, 

sin ~bl + sin ~b o 

COS ~1 "j- COS ~2 

sin r +- sin ~b 1 

with ~bo= (2n/q) p, 01 = (2n/q) p", 02= (2n/q) p'. The corresponding coef- 
ficients are of the form 

< :d3e7 c~D)o >10 

with 

x ~ A  x ~ B  x ~ C  x ~ D  

where ax, bx, cx, dx ~ N and A, B, C, D are subsets of A with multiplicity. 
This positivity can easily be verified provided q is even; the proof is the 
same as for continuous rotators. (6'7) For the lhs we get the same series 
except that some coefficients change their sign. This yields inequality (7) 
whenever all terms in the rhs series are positive. This occurs if we can find 
p, p", p' such that 

cos ~o~> Icos ~1 

sin ~b 1 >~ tsin ~bot 

cos ~ / >  Icos ~21 

sin ~2 ~ Isin ~bll (8) 

Taking into account the rotation invariance of our model, we can choose 
a reference system with - n / 2  ~<~b o < 0 and ~1 = -~b0(see Fig. 1) such that 
conditions (8) are satisfied, provided ~b2-~bo~<n, or equivalently 
p' - p  ~ q/2. This completes the proof of (1). 

4. P E R T U R B E D  C L O C K  M O D E L S  

The above theorem is valid at all temperatures and in particular at 
T---0, where it gives an inequality between ground-state energies under 
specified boundary conditions. The inequality means that there is a con- 
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Fig. 1. For a given triple (q~o,~b1,~b2) with #o~.r and ~b2-~o4r~, the system of 
reference is chosen such that the x axis becomes the bisectrix between ~b 0 and ~bl. 

figuration with a layer of intermediate angle which has a lower energy than 
the configurations which are restricted to the two states corresponding to 
the top and bot tom boundary conditions. This means that the inequality 
(2) does not contradict the Antonov rule 

At T =  0, our inequality reduces to 

cos[~(p'-p)]+(p'-p)<~(p'-p-1)cos(~) 
Whether or not the corresponding equality is verified means that the 
wetting temperature Tw is zero or does not exist. 

Let us now consider a perturbed clock model, which enables one to 
study the wetting transition. For  simplicity, we shall introduce this model 
in its easiest form, when q = 4. 

The new Hamiltonian is given by (J, e > 0) 

To compare a 0-2 interface with 0-1 and 1-2 interfaces, one has to 
study the corresponding surface tensions. At T =  0, it is readily seen that 

%2 = 2J 

Zox =T12= J + 2 ~  

For T small enough it is therefore clear that 

~'o2 < ~'ot + ~'12 
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which means that  the 0-2 interface is not  wetted by a film of "1". However,  
if one takes into account  the first excitations, we get (in dimension d =  2; 
the argument  works similarly in higher dimension) 

%-ol =%12 = J + 2 e -  2fl - l e  ~J + O ( e - : p s )  

4/3- le 2~'-  8~ 
% 2 = 2 J - 2 f i  - l e  2 ~ _  1 - e - 4 ~ E 1  + O ( e - P J ) ]  

The last term in %'o2, expanded in a geometric series, comes from sums over 
bubbles of  height 1 and length n. The restriction to height 1 in a bubble of 
length n is an approximat ion [1 + O ( e - ~ S ) ]  ". Hence the formula, The 
expansion makes sense only for 

e ~ (1/4fi) O(e-/~s) 

with the s a m e  O(e-PJ), and is seen to diverge when e T ( 1 / 4 f l )  O ( e - ' J ) ,  

where the mean length of  bubble diverges. This is not  a r igorous result, but  
we conclude that  there must  be a wetting transition at some f lw  such that 

,~ fl ~V 1 e flwJ 
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